Acta Cryst. (1999). C55, 1984-1986

trans-Bis(ethylenediamine)dinitrocobalt(III) perchlorate

Karen R. Maxcy and Mark M. Turnbull
Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St, Worcester, MA 01610, USA. E-mail: mturnbull@clarku.edu

(Received I July 1999; accepted 17 September 1999)

Abstract

The reaction of cobalt(II) perchlorate with ethylenediamine and sodium nitrite in aqueous solution gave the title $\mathrm{Co}^{\text {III }}$ compound, $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$, as yellow crystals. The complex crystallizes in three different conformations in the asymmetric unit, two on centers with $\overline{1}$ symmetry and one in a general position. Numerous hydrogen bonds occur between molecules, but most are quite weak. The ethylenediamine N atoms occupy the equatorial sites with the NO_{2} ions bonded in axial positions. The NO_{2} moieties nearly eclipse a pair of trans amine-N atoms in one independent molecule [$\mathrm{O}-\mathrm{N}-\mathrm{Co}-\mathrm{N}$ angles range from -1.4 (6) to $\left.4.3(5)^{\circ}\right]$, while they bisect the $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ angle in the other two $[\mathrm{O}-\mathrm{N}-\mathrm{Co}-\mathrm{N}$ angles range from -44.8 (6)

 to $\left.52.1(5)^{\circ}\right]$.
Comment

We are interested in the synthesis of compounds of the general formula $\left[M(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)\right] X$, where M is a transition metal in the $2+$ oxidation state, en is ethylenediamine and X is a non-coordinated anion, for study of the Haldane gap (Haldane, 1983). The structure of the parent compound in this family ($M=\mathrm{Ni}, X=\mathrm{ClO}_{4}$) was reported by Meyer et al. (1982) and exists as a coordination polymer with the $\mathrm{Ni}(\mathrm{en})_{2}$ units bridged by nitrite ions. While compounds in this family with halfinteger spins, such as those containing $\mathrm{Co}^{\mathrm{II}}$, will not exhibit a gap in their low-temperature magnetization, they may provide useful information regarding the broader field of one-dimensional magnetic chains. Thus, we attempted the preparation of $\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)\right] \mathrm{ClO}_{4}$, (I).

(I)

Reaction of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, $\left[\mathrm{Co}(\mathrm{en})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and NaNO_{2} in water under argon resulted in a variety of products, including a yellow crystalline material which proved to be the oxidized product $\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$. Crystals suitable for diffraction grew from the reaction mixture over the course of a few days under a stream of argon and proved to be triclinic, $P \overline{1}$. The asymmetric unit (see Fig. 1) contains three independent $\mathrm{Co}^{\text {III }}$ ions, one each at the $0,0,0$ and $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ inversion centers and the third in a general position. This particular mode of packing is unusual. Slightly less than 9% of $P \overline{1}$ structures have $Z=4$ (Brock \& Dunitz, 1994). In addition, Padmaja et al. (1990) have looked at incidence of two half molecules in the asymmetric unit being located on symmetry elements to generate $Z^{\prime}=1$ (Z^{\prime} is the number of molecules in the asymmetric unit). Neglecting polymers and those systems with only solvent molecules or disordered water molecules on the inversion center, they found only 134 examples of structures with two half molecules in the space group $P \overline{1}$ (this space group represents nearly 50% of all such structures). The current

Fig. 1. The structure of $\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$ shown with 50% probability displacement ellipsoids. Only atoms in the asymmetric unit are labeled.
situation with two half molecules on inversion centers and one molecule in a general position must be similarly rare.

The molecule containing Col sits in a general position near $\frac{1}{4}, \frac{3}{4}, \frac{1}{4}$. One of the O atoms on one of the nitrite ions is disordered with 50% occupancy at each O12C and O 12 D . Col and the four ethylenediamine N atoms are nearly coplanar with a mean deviation of $0.0036 \AA$. The two en rings both show the δ conformation (and thus the inversion-related molecule has a λ, λ conformation). The non-disordered nitrite ion is oriented such that it eclipses a pair of trans amine-N atoms [O11A-N11-$\mathrm{Col}-\mathrm{N} 15=-4.3(5)$ and $\mathrm{O} 11 B-\mathrm{N} 11-\mathrm{Col}-\mathrm{N} 13=$ $\left.-1.4(6)^{\circ}\right]$. The disordered nitrite ion is positioned such that O 12 A and the average position of O 12 C and O12D each lie over one of the en rings [O12A-N12-$\mathrm{Col}-\mathrm{N} 14=-20.6(6), \mathrm{O} 12 \mathrm{C}-\mathrm{N} 12-\mathrm{Col}-\mathrm{N} 16=$ -34.3 (12) and $\left.\mathrm{O} 12 D-\mathrm{N} 12-\mathrm{Col}-\mathrm{N} 16=2.4(12)^{\circ}\right]$.

The Co 2 atom is located at the cell origin. The conformation of the en rings are thus δ and λ, unlike those in Col . The plane of the nitrite ion nearly bisects the $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ angle between en rings [O21A-N21$\mathrm{C} 2-\mathrm{N} 22=49.2(5)$ and $\mathrm{O} 21 B-\mathrm{N} 21-\mathrm{Co} 2-\mathrm{N} 23=$ $\left.-46.9(5)^{\circ}\right]$. No disorder is observed in the $\mathrm{Co} 2 \mathrm{~mol}-$ ecule.

The Co 3 atom is also located on an inversion center, i.e. $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. The conformation of the nitrite ion is similar in this molecule to Co 2 with respect to the en rings $[\mathrm{O} 31 \mathrm{~A}-\mathrm{N} 31-\mathrm{Co} 3-\mathrm{N} 32=-44.8$ (6) and $\left.\mathrm{O} 31 B-\mathrm{N} 31-\mathrm{Co3}-\mathrm{N} 33=52.1(5)^{\circ}\right]$. One C atom lies nearly in the en ring [mean deviation of $\mathrm{Co3}, \mathrm{~N} 32$, nearly in the en ring [mean deviation of \AA Co3, N 32 ,
N 33 and C 33 from planarity is 0.017 (4) \AA], while the second C atom is disordered ($\mathrm{C} 32 A / \mathrm{C} 32 B$ 0.48:0.52 occupancies) above and below that plane. The overall effect is that of the four molecules in the unit cell, two form an enantiomer pair, one is meso and one is disordered.
The bond lengths and angles about the Co ions do not vary greatly between molecules. The Co-N bonds to the amine-N atoms all lie in the range 1.945 (5)1.957 (5) \AA, while those to the nitrite-N atoms have a broader range of 1.924 (5)-1.975 (5) A. The chelating $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ angles for the en ligands are also all similar with an average value of $85.9(2)^{\circ}$. The nitrite ions lie near the ideal axial sites with an average angle of 87.7 (3) ${ }^{\circ}$ between the nitrite nitrogen and the mean plane of the amine- N atoms. These bond lengths and angles are all in good agreement with those observed for similar trans-[Co(en) $\left.)_{2}\left(\mathrm{NO}_{2}\right)_{2}\right] X$ complexes, such as the iodide and isothiocyanate (Bernal \& Cetrullo, 1986) and nitrate (Bortin, 1976) complexes, and the related cissalts, such as the chloride (Bernal, 1985), iodide (Bernal et al., 1993) and nitrite (Marsh, 1997).

The structure is stabilized by hydrogen bonding. The strongest of these are nearly linear ($160-170^{\circ}$) and between amine groups and nitrites of adjacent molecules [N13-H13A‥O31A $=2.973$ (7) and N14-
$\mathrm{H} 14 A \cdots \mathrm{O} 21 \mathrm{~A}(x, y+1, z)=3.037(8) \AA$], and between amine groups and one of the perchlorate ions [N15$\mathrm{H} 15 \mathrm{~A} \cdots \mathrm{O} 24=2.97(1) \AA]$. Numerous other weaker hydrogen bonds are also found ($\sim 3.05-3.30 \AA$ and $120-155^{\circ}$). The bond lengths and angles within the perchlorate ions are generally unremarkable and there is mild disorder in the perchlorate-O atoms that are not involved in significant hydrogen bonds. The disordered O atoms were refined isotropically.

Finally, in an attempt to prevent the oxidation which we guessed might be due to the perchlorate ions, we attempted to synthesize the desired salt as the BF_{4} complex. The results were nearly identical to the perchlorate reaction with several products resulting. Yellow crystals with similar morphology proved to be the analogous material $\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{BF}_{4}$. This suggests that NO_{2}^{-}must be the oxidizing agent as the $\mathrm{Co}\left(\mathrm{BF}_{4}\right)_{2}$ solution is stable indefinitely under argon in the presence of en. The crystals were of poor quality and so full refinement was not possible. The unitcell parameters $[a=6.694(1), b=13.414(1), c=$ 15.618 (1) $\AA, \alpha=114.150$ (2),$\beta=94.818$ (5) and $\gamma=$ $\left.95.736(5)^{\circ}\right]$ are in good agreement with the perchlorate salt and the solution is isostructural (the coordinates have been deposited at the Cambridge Crystallographic Data Centre for general access; reference code CCDC \#129259).
Work to identify the other components of the product mixture is in progress.

Experimental

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2}(2.33 \mathrm{mmol}),\left[\mathrm{Co}(\mathrm{en})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}(4.67 \mathrm{mmol})$ and $\mathrm{NaNO}_{2}(7.00 \mathrm{mmol})$ were dissolved in degassed water (15 ml) under argon resulting in a dark red/orange solution. A green/brown precipitate formed over the next 3 h . The mixture was filtered and the filtrate left under a stream of argon. Yellow crystals which formed over the course of several days were collected by filtration, dried in air and separated by hand from numerous other crystals which formed in the mixture. The crystals were isolated in only 5.4% yield, with a green/brown powder being the major product.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{ClO}_{4} \quad$ Mo $\mathrm{K} \alpha$ radiation
$M_{r}=370.61$
Triclinic
$P \overline{1}$
$a=6.718$ (1) \AA
$b=13.595(1) \AA$
$c=15.637(1) \AA$
$\alpha=114.015(4)^{\circ}$
$\beta=95.196(3)^{\circ}$
$\gamma=94.984(3)^{\circ}$
$V=1287(2) \AA^{3}$
$Z=4$
$D_{x}=1.913 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
$\lambda=0.71073 \AA$
Cell parameters from 16 reflections
$\theta=11.85-20.78^{\circ}$
$\mu=1.592 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Chunk
$0.45 \times 0.40 \times 0.35 \mathrm{~mm}$
Yellow

Data collection

CAD-4 diffractometer
$\theta-2 \theta$ scans
Absorption correction: ψ scan (Fair, 1990)
$T_{\text {min }}=0.529, T_{\text {max }}=0.573$
6468 measured reflections 6468 independent reflections 4849 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.204$
$S=1.207$
6468 reflections 363 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0516 P)^{2}\right.$
$+8.8786 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$\theta_{\text {max }}=28.46^{\circ}$
$h=0 \rightarrow 8$
$k=-18 \rightarrow 18$
$l=-20 \rightarrow 20$
3 standard reflections frequency: 420 min intensity decay: 0.7%

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

Col-N12	1.945 (6)	$\mathrm{Co} 2-\mathrm{N} 23$	1.947 (5)
Col-N13	1.945 (5)	$\mathrm{C} 02-\mathrm{N} 22$	1.949 (5)
Col-N15	1.946 (5)	$\mathrm{N} 21-\mathrm{O} 21$ A	1.224 (7)
Col-N14	1.957 (5)	N21-O21B	1.230 (7)
Col-N16	1.960 (5)	Co3-N31	1.924 (5)
Col-N11	1.975 (5)	Co3-N32	1.950 (5)
$\mathrm{N} 11-\mathrm{O} 11 \mathrm{~B}$	1.229 (7)	Co3-N33	1.953 (5)
N11-O11A	1.232 (7)	N31-O31B	1.229 (7)
$\mathrm{N} 12-\mathrm{O} 12 \mathrm{~A}$	1.205 (8)	N31-O31A	1.233 (8)
$\mathrm{Co} 2-\mathrm{N} 21$	1.932 (5)		
N12-Col-N13	89.1 (2)	N16-Col-N11	89.1 (2)
N12-Col-N15	90.8 (2)	$\mathrm{O} 11 \mathrm{B-N11-O11A}$	117.4 (5)
N13-Col-N15	179.6 (2)	O11B-N11-Col	121.7 (4)
N12-Col-N14	90.3 (2)	O11A-N11-Col	120.8 (4)
N13-Col-N14	86.0 (2)	$\mathrm{O} 2 \mathrm{~A}-\mathrm{N} 12-\mathrm{Col}$	120.4 (5)
N15-Col-N14	93.6 (2)	$\mathrm{N} 21-\mathrm{Co} 2-\mathrm{N} 23$	90.6 (2)
N12-Col-N16	90.1 (2)	N21-Co2-N22	89.8 (2)
N13-Col-N16	94.9 (2)	$\mathrm{N} 23-\mathrm{Co} 2-\mathrm{N} 22$	86.0 (2)
N15-Col-N16	85.5 (2)	$\mathrm{O} 21 A-\mathrm{N} 21-\mathrm{O} 21 B$	119.5 (5)
N14-Col-N16	179.0 (2)	$\mathrm{O} 21 \mathrm{~A}-\mathrm{N} 21-\mathrm{Co} 2$	120.1 (4)
N12-Col-N11	178.1 (2)	$\mathrm{O} 21 \mathrm{~B}-\mathrm{N} 21-\mathrm{Co} 2$	120.4 (4)
N13-Col-N11	89.3 (2)	N31-Co3-N32	89.6 (2)
N15-Col-N11	90.8 (2)	N31-Co3-N33	90.6 (2)
N14-Col-N11	90.6 (2)	N32-Co3-N33	85.8 (2)

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N13-H13A $\cdots \mathrm{O} 1 A$	0.90	2.08	$2.973(7)$	170
N14-H14A $\cdots \mathrm{O} 21 A^{\mathrm{i}}$	0.90	2.17	$3.037(8)$	161
N15—H15A $\cdot \mathrm{O} 24^{i 1}$	0.90	2.09	$2.969(10)$	164

Symmetry codes: (i) $x, 1+y, z$; (ii) $1+x, 1+y, z$.
H atoms were included as a riding model with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.90 \AA$.

Data collection: CAD-4 EXPRESS (Straver, 1992). Cell refinement: CAD-4 EXPRESS. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS 97 (Sheldrick, 1990). Program(s) used to refine structure: SHELX97 (Sheldrick, 1997). Software used to prepare material for publication: SHELX97.

We are grateful to Professor Bruce Foxman at Brandeis University for the X-ray data collection. We are also indebted to the NSF (grant DMR-9221187) and ChemDesign Corporation [ChemDesign Summer Undergraduate Fellowship (KRM)] for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1228). Services for accessing these data are described at the back of the journal.

References

Bernal, I. (1985). Inorg. Chim. Acta, 96, 99-110.
Bernal, I. \& Cetrullo, J. (1986). Inorg. Chim. Acta, 122, 213-220.
Bernal, I., Myrczek, J. \& Cai. J. (1993). Polyhedron, 12, 1149-1155.
Bortin, O. (1976). Acta Chem. Scand. Ser. A, 30, 657-660.
Brock, C. P. \& Dunitz, J. D. (1994). Chem. Mater. 6, 1118-1127.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crustal Structure Analysis. Enraf-Nonius, Delft. The Netherlands.
Haldane, F. D. (1983). Phys. Lett. A, 93, 464-468.
Marsh, R. E. (1997). Acta Crust. B53, 317-322.
Meyer, A., Gleizes, A., Girerd, J. J., Verdaguer, M. \& Kahn, O. (1982). Inorg. Chem. 21, 1729-1739.
Padmaja, N., Ramakumar, S. \& Viswamitra, M. A. (1990). Acta Cŗist. A46, 725-730.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELX97. Programs for the Solution and Refinement of Cristal Structures. University of Göttingen, Germany.
Straver, L. H. (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

Acta Cryst. (1999). C55, 1986-1988

A redetermination of bis(ethylenediamine$\left.N, N^{\prime}\right)$ bis(perchlorato-O)copper(II)

Karen R. Maxcy and Mark M. Turnbull
Carlson School of Chemistry and Biochemistr;, Clark
University, 950 Main Street, Worcester, MA 01610, USA.
E-mail: mturnbull@clarku.edu

(Received 7 June 1999; accepted 7 September 1999)

Abstract

Reaction of copper(II) perchlorate with excess ethylenediamine (en) in aqueous solution gave the title complex, $\left[\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$. The cation is centrosymmetric with a mean $\mathrm{Cu}-\mathrm{N}$ distance of 2.016 (2) \AA. There are semi-coordinate bonds to the perchlorate ions with a $\mathrm{Cu}-\mathrm{O}$ distance of 2.579 (4) \AA. The $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ angle is $84.69(9)^{\circ}$, as expected for chelating en. The structure is stabilized by hydrogen bonds from three of the perchlorate O atoms to amino H atoms within each molecule and between molecules, linking them into chains.

